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INTRODUCTION

The seismic design of a structure can be a complex task. Several
alternative design techniques are in use. These vary from a relatively
simple static assignment of shear forces to a full complete nonlinear
dynamic analysis. The Naval Facilities Engineering Command (NAVFAC)
guidelines specify that a site seismicity study be performed for critical
buildings in lieu of the lateral load coefficients. Further, the level
of design earthquake is suggested as the ground acceleration having an
80% chance of not being exceeded in 50 years.

An automated procedure has been developed at the Civil Engineering
Laboratory (CEL), as part of an on-going study, to perform a seismic
analysis using available historic and geologic data. The objective of
the seismicity study is to determine the probability of occurrence of
ranges of accelerations at the site. To do this, the site coordinates
and the study bounds are specified in terms of latitude and longitude.

A regional study is first performed in which all of the historic epi-
centers are used with an attenuation relationship to compute site accel-
eration for all historic earthquakes. A regression analysis is then
performed to obtain regional recurrence coefficients, and a map of
epicenters is plotted. The regional recurrence can be used to compute
the probability of site acceleration for randomly located events in the
study area. Such a condition is used when individual faults are not
known well enough to be specified.

Where individual fault areas can be specified, individual subsets
of the historic data are used in conjunction with geologic data to
determine fault recurrence coefficients, which are used to compute the
probability of site acceleration from individual fault sources. The
total risk is determined for all faults specified. Confidence bounds
are given on the site acceleration as a function of probability of not
being exceeded.

The structural design engineer may use either response spectra or
time history techniques in the analysis of a structure. The California
Institute of Technology data base of recorded accelerograms has been
obtained by CEL and installed for NAVFAC use. A program was prepared to
search the record of accelerograms, given a desired magnitude event,
epicenter-site distance, acceleration level, and soil condition to
determine the closest matching records. Another program prepared by CEL
takes selected response spectra, scales them, and computes mean and
standard deviation spectra and maximum envelope spectra. These spectra
are plotted either in tripartite form or in semilog form. A program was
prepared to scale, plot, and punch time history accelerograms for use as
input to dynamic finite element programs.

References 1 and 2 were prepared to document the programs and
procedures. A case study of the San Diego area is included in Reference
2. Reference 3 was prepared to document a typical case study in the Los
Angeles area. Results compare favorably with results by others. Refer-
ence 4 was prepared to study a site where faulting could not be identified
readily and regional analysis techniques had to be used. The following
list summarizes programs written at CEL as part of this task.
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Program RECUR Computes probability of site acceleration
given historic and geologic data

Program OPTIREC Optimally selects available accelerogram
to match site condition specified

Program RESPLOT Selects, scales, determines average, etc.,
of response spectra and plot results

Program TIMHIS Selects, scales, and plots time history
accelerogram records

The following programs were obtained from other sources to support
this work.

Program CH&42 NOAA earthquake epicenter data and program
to search tape (NOAA)

Program SIMQKE Generates set of accelerograms given input
response spectra (MIT)

Program SPECEQ Computes response spectra from accelerogram

All of the programs are installed on the Control Data System and
are available for NAVFAC and Engineering Field Division (EFD) use. The
programs have already been used by EFDs.

A standardized procedure has been developed to determine probability
of site acceleration using both historic and geologic data. By use of
this information, a site-matched acceleration response spectra or time
history can be created. Reference 5 focused on the use of response
spectra and time history techniques, specifically looking at the compu-
tation of response when a structure is present, (particularly in soil-
structure interaction). That report demonstrated the sensitivity of
structural response to input data.

Previous CEL reports demonstrate a suggested approach for computing
the probability of seismic loading at a site. The total plant replacement
value of Naval installations in Uniform Building Code (UBC) seismic
zones 3 and 4 is approximately $21 billion. Current NAVFAC criteria
specify a 225-year return time earthquake (807 probability of not being
exceeded in 50 years) as the basis for seismic design. The selection of
this level was a NAVFAC judgment decision. This study will attempt to
develop risk-optimized procedures for Navy structures to minimize damage
and repair costs in relation to initial construction cost. A damage
function relating expected damage as a function of imposed acceleration
level can be constructed. This may be combined with a function relating
cost of construction as a function of design acceleration level for use
with the actual probability of site acceleration. Total cost may be
related to design earthquake return time. The intent is to focus on the
seismic design procedure, the earthquake design return period, and the
level of structural performance in an attempt to produce the safest,
least-cost structure.

It is important to note that the probability of site acceleration
used in this study is based on the total risk to the site from all of
the faults in the area. As such, it represents a more rigorous exact
estimation of the actual risk. Less rigorous studies by others attempt
to design for the most significant fault, ignoring all others. This is
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a simplification perhaps useful for design; however, it understates the
risk in most situations where there are several faults of almost equal
seismic capability.

PERCEPTION OF THE SEISMIC PROBLEM

Perhaps the first recorded building code is contained in the Code
of Hammurabi (Ref 6). Although specific design requirements are not
provided, penalties are given for functional failure:

“"A. If a builder build a house for a man and do not make its
construction firm and the house which he has built col-
lapse and cause the death of the owner of the house -
that builder shall be put to death.

B. If it cause the death of the son of the owner of the
house - they shall put to death a son of that builder.

C. 1If it cause the death of a slave of the owner of the
house - he shall give to the owner of the house a slave
of equal value.

D. If it destroy property, he shall restore whatever it
destroyed, and because he did not make the house which
he built firm and it collapsed, he shall rebuild the
house which collapsed at his own expense.

E. If a builder build a house for a man and do not make its 1
construction meet the requirements and a wall fall in,
that builder shall strengthen the wall at his own expense."

It is obvious that this code would have a conservative influence on the
designer.

The 1906 earthquake caused major damage in San Francisco, yet it
was not until 1948 that comprehensive lateral force design criteria
specifically referring to seismic forces was adopted there. 1In 1969 a
parapet ordinance was passed. Although the mayor signed the ordinance
he did not support it publicly on the grounds that the doomsday mental-
ity would deprive San Francisco of its exterior beauty (Ref 7).

In 1976 less than 5% of California home owners were covered by
earthquake insurance. Historically, the insurance industry has not
promoted the sale of earthquake insurance based on the concern of large
losses should a severe disaster occur. The problem of high losses is
caused by the phenomenon of adverse selection, whereby only people in
hazard-prone areas wish to buy insurance coverage, thus necessitating
high rates while concentrating coverage on small risk-prone areas.

Rates are a function of the risk zone in which they are located. Table 1
illustrates rates for California, which is divided into three zones

(Ref 8). Depending upon the rate of return of invested money, the
insurance industry break-even period for frame structures is planned for
events with over 50-year return times.
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CURRENT DESIGN PROCEDURES

Uniform Building Code (UBC) 1979 Edition

The seismic design is specified in Section 2312 of the 1979 edition

of the UBC (Ref 9). The minimum total lateral force or total one-direction

base shear is specified by

V = ZIKCSW
where Z = numerical coefficient, dependent on the zone-

specified map of the United States
Zone 1 Z = 3/16
Zone 2 Z = 3/8
Zone 3 Z = 3/4
Zone 4 Z =1

C = based on natural period of structure; the period is

based either on an analysis or an empirical equation

S = site structure interaction coefficient based on
period of structure and period of soil

= occupancy importance factor; varies from 1 to 1.5

K = numerical coefficient based on building type and
bracing
W = total dead load

The procedure established is a working stress design approach. The
total base shear is determined and then applied to the floor levels by a
distribution equation using the weights and heights of the individual
floors. The building is to be designed to resist overturning. Lateral
story drift relative to an adjacent story shail not exceed 0.005 times
the story height; the displacement calculated by application of the
required lateral forces shall be multiplied by 1.0/K to obtain the
drift, but not less than 1.0. Base shears are assumed to act nonconcur-
rently in the direction of each major axis of the structure. Torsion is
considered directly by increasing shears; irregular structures require a
dynamic analysis. Provisions are made for design of bearing and nonbear-
ing interior and exterior walls. Roof and floor diaphragms must be
designed for the lateral force. All allowable stresses and soil-bearing
values may be increased by one-third for earthquake forces. Ultimate
strength procedures are specified for concrete design. Load factors are
specified. Provisions allow for a dynamic analysis. The design philoso-
phy provides for a structure to remain essentially elastic under a low
to moderate level of shaking prescribed for the zone. For ordinary
frame construction in zone 4, the level of shaking represents an approxi-
mate 70-year return time for ordinary structures based on CEL site
studies (although this varies considerably by location and distance from
the fault system governing the motion). Although inelastic behavior is
expected to occur under moderate to strong earthquakes, no provisions
are prescribed for collapse level designs.

Figure 1 (from Ref 10) gives approximate damage estimates for
design by UBC.
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Structural Engineer Association of California (SEAOC) Code of 1975

' The basic approach to lateral force computation is similar to the

UBC presented in Reference 10. Lateral force on the elements of struc-

tures, such as parapets, partitions, and diaphragms, use different

! coefficients. The UBC contains modifications for zones 1 and 2 not
found in the SEAOC code (Ref 11) and procedures for design of floor

' diaphragms are different. The UBC requires evaluation of equipment
required to be functional after an earthquake for story drifts of 2.0/K
times the normal allowable. As with the UBC the approach taken is an
elastic-type design with the understanding that inelastic behavior may

: : ) result under probable earthquake exposure. The philosophy limits stress

j T and drift under a service-type load. SEAOC contains certain limitations

; on concrete shear walls and braced frames not found in the UBC. Collapse
! load levels are not prescribed.

ATC-2 by Applied Technology Council

The ATC-2 study (Ref 12) evaluated the response spectrum approach
to the seismic design of buildings. The procedure requires a site
seismicity study to establish a design level acceleration and a collapse
level acceleration. The approach is to prevent significant damage
1 ,‘ during an earthquake with moderate intensity at the site and to prevent
r ‘ collapse during an earthquake of major intensity at the site. A damage
i threshold spectrum is established for a level of ground shaking with a
: return time of about 100 years. A collapse threshold spectrum is estab-
| 4 lished based on maximum event and has a return period of about 660
: , years. A spectral shape is established using procedures developed by
Newmark and Hall (Ref 13). An inelastic spectrum is established for
design and collapse levels. Ductilities and damping are as specified in
Table 2. Modal analysis techniques are specified for analysis of the
structure. Modes are combined by square root of the sum of the squares

p of the individual modes. The strength capacity must be sufficiently

! high to prevent significant structural damage due to the damage threshold
earthquake. The element yield must provide ductile deformation capacity.

| As noted in Table 2 inelastic behavior is specified for both design and

: collapse levels. Load factors U for member design are expressed as:

W U = D+ L+E
[
). U = (2/3) D-E
’; ) where D = dead
t = live
E = earthquake

y ——— -

Since large deformations are possible, P - A effects from frame sidesway
must be considered. Two-directional seismic effects are combined by
prescribing 100% of the force in the main direction and 30% of the
orthogonal force applied in the orthogonal direction. Each level of
spectrum considers both strength and displacement. Story drifts are set
? at four times UBC levels for the collapse level.




ATC-3, Applied Technology Council Provision for Seismic
Regulations for Buildings

A study (Ref 14) was performed to prepare tentative design provisions
applicable to earthquake areas of the United States. The philosophy in
establishing design levels was to resist minor earthquakes without
damage, to resist moderate earthquakes without significant structural
damage but with some structural damage, and to resist major earthquakes
without major failure and maintain life safety. Maps of the United b
States provide for evaluation of an effective peak acceleration and
velocity. The design level return time varies with the type of building
system; for a steel frame, it is about 85 years. Buildings are grouped b
according to importance and occupancy. Seismic performance categories
are established. Site effects are considered by three soil profiles
with corresponding base shear factors of from 1.0 to 1.5. Provisions
for both lateral force procedures and dynamic analysis exist. Irregular
structuras require a dynamic analysis. Load factors are established as

U = 1.2D+1.0L+1.0S*1.0E

U = 0.8D*1.0E

Orthogonal effects are considered by combining 100% of the forces
for one direction plus 50% of the forces for the orthogonal directions.
Story drifts are set at 0.010 for critical facilities and 0.015 for
ordinary buildings. Factors are used to increase computed drifts for

possible inelastic behavior. For the lateral force method, the base
shear is given by

vV = CS W
1.2 Av S 2.5 Aa
where Cs = 23 or " ‘

RT !

Aa = effective peak acceleration i

Av = effective peak velocity

S = soil profile factor

R = response modificaton; depends on type of building system

T = building period

The base shear is distributed based on the floor weights and heights.
Overturning is considered. Story drifts are multiplied by factors based :
on the building system to compare with allowables and are limited to v
control significant yielding. Under the prescribed loading, deformations
should be less than the level causing complete plastification of at
least the most critical region of the structure. This would be the
formation of the first plastic hinge in a steel frame. In a concrete
frame this point is reached when the critical member reaches its ultimate
strength. Redundant members are assumed, so plastification of other
members is prevented and a complete failure mechanism is also prevented.
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Ultimate strength concrete design or working stress steel design are
allowed. 1In the latter case, allowable stresses are increased by 1.7 to
approach ultimate strengths. For modal analysis, the spectral levels

are based on the base shear equation given previously. Modes are combined
by square root of the sum of the squares of individual mode shapes.

Comments on Present Methods

Conventional design practice assumes that governing ground motion
occurs as horizontal translation (vertically propagating shear waves).
The ground motion actually has six components — three translational and
three rotational. The building may see spatial variation and motions
that are not in phase. In many cases, design against collapse is the
governing requirement rather than service loading. Especially in this
area, use of linear elastic techniques for response and use of inelastic
response spectra generated by application of ductility factors to elastic
spectra may be in significant error.

Reference 15 reports on a study of a four-story building in which
interstory displacements were evaluated. Table 3 gives response from
elastic analysis using 39 real earthquakes, 15 artificial earthquakes,
and the average response spectrum. Although the mean values agree for
this elastic analysis, the coefficient of variation is large. Table &4
gives interstory ductility ratios for inelastic analysis; again, variation
is large. This illustrates the difficulty in designing for a specified
level of yielding. Current equivalent static forces, procedures, and
elastic analyses are lacking exactness. It is important to point out
that ductility ratio or yielding varies throughout the building. The
use of spectra for multidegree-of-freedom systems when hysteretic behavior
in the structure occurs can significantly underestimate damage. The
hysteretic behavior results in strength degradation not accounted for in
elastic-plastic models. The use of inelastic design response spectra
determined from linear elastic spectra has serious limitations in that
the duration of the ground shaking and the number and characteristics ot
the acceleraton pulses are omitted. Repeated large acceleration pulses
can lead to accumulation of large strains. Further, the type of excita-
tion which induces dynamic response in a linear elastic system is very
different from the type of excitation which is critical to an elasto-
plastic system (Ref 16). Resonance phenomenon is of major significance
in an elastic system; however, small inelastic deformations in a yielded
system are equivalent to large values of damping. The natural period of
a structure changes with deformation (Figure 2). Use of linear elastic
response spectra in elastic design is controlled by the resonance phenom-
enon induced by single acceleration pulses with the same periodicity as
the structure. Considerably larger deformations can be produced by just
one long pulse with an effective acceleration exceeding the yield strength
of the structure. For inelastic response, the largest incremental
velocity ~ rather than the largest peak acceleration — is of importance
(Ref 16). Thus, the type of ground motion which is critical depends on
the type of behavior of the structure.
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Building Damage

A correlation exists between the degree of damage and the intensity
of shaking. Table 5 shows a damage probability matrix for buildings in
the 1971 San Fernando earthquake (Ref 10). This gives an overview of
structural performance but does not relate structure design parameters.
In a similar way, Culver et al. in Reference 17, knowing the quality of
construction in terms of strength, physical condition, integrity, and
workmanship, estimate drift to yield and ductility to failure (Tables 6
and 7). These set up allowable deflection guides for comparison with
results of an analysis.

Masonry buildings as a class have been studied to relate damage
(mean damage ratio) to intensity of shaking.

Masonry buildings are classified into four groups:

e Masonry A: Engineered reinforced masonry with good materials
and good workmanship; designed to resist earthquakes

e Masonry B: Reinforced masonry with good workmanship and
materials; not designed to resist earthquakes

e Masonry C: \Unreinforced masonry with ordinary workmanship
and materials; not designed to resist earthquakes (Type III
buildings)

e Masonry D: Poor materials, such as adobe, and poor workmanship;
little or no earthquake resistance

Figure 3 shows the damage as a1 function of intensity (Ref 7). 1In Figure
3a an attempt is made to identify the subsystems of the structure and
identify the damage to each subsystem.

Another study by Sauter (Ref 18) also gives damage ratio as a
function of intensity (Figure 4). Data in Figure 3 show average behavior
whereas data in Figure 4 tend to be higher such as would be used for
insurance estimates.

In evaluating the total loss to a facility from an earthquake, one
must include the physical damage, the injury and loss of life, the
damage to contents of the building, and the interruption in the functional
use of the facility and its associated cleanup. In evaluation of the
physical damage, the cost of repair may exceed the original cost of the
structure; thus, the damage ratio (percent of damage) must reflect the
present worth or replacement of the facility.

Physical damage involves both the structural elements and the
nonstructural. Nonstructural elements include interior and exterior
walls, partitions, ceilings, plumbing, glazing, lighting fixtures,
stairs, electrical systems, and elevators. These may represent a larger
monetary loss than the damage to the structural system. Such is usually
the case with steel frame buildings. Walker (Ref 19) relates story
drift to total damage and nonstructural damage (Figures 5 and 6).

Other costs include damage to the contents and downtime; this may
represent 30% of the total loss.

The intensity may be related to site acceleration through use of
Figure 7. Figure 8 illustrates conceptually how it is possible to use
previous data to determine damage as a function of site acceleration.
Once the function has been established for each type of construction, it




is possible to divide the acceleration by some form of design level
acceleration and thus normalize the acceleration axis. Figures 9, 10,
and 11 illustrate this. Several levels of design acceleration were
selected and are shown with the design ductility levels. The relation-
ship between damage and acceleration ratio is seen to be approximately
linear.

Other Losses

Loss of life is especially difficult to quantify. Figure 12 will
be adopted for this study (Ref 20). The loss of life is estimated,
based on historical evaluation of previous earthquakes from work by
Wiggins (Ref 21).

(Building $ Loss)o'813

Numbers of lives lost = 100,000

The number of injuries may be estimated as follows:

43.0 x loss of life
2.8 x loss of life

All injured

Seriously injured

Cost Increase of Earthquake Resistant Construction

The basic costs of seismic resistant design are found in the struc-
tural system, specifically the beam girders and columns. Other costs
include the foundation.

Nakano (Ref 22) investigated structure costs. For elastic design
with seismic design coefficients and allowable stress limits, he found
the following cost ratio.

Yy = 1+R(C-0.2)
_ . cost by seismic design coefficient = C
where y = cost ratio (cost by seismic design coefficient = 0.2)
R = cost coefficients as given in Table 8
C = seismic design coefficient (0.2 S C £ 1.0)

Two examples are shown — Figure 13a for steel frame buildings and
Figure 13b for reinforced concrete buildings.

Whitman et al. (Ref 23) note the increase in cost for typical
apartment buildings for various UBC design levels (Figure 14). These
data appear to be much lower (about threefold) than Nakano's. Whitman's
data are more appropriate to United States construction.

The Department of Housing and Urban Development (HUD) sponsored a
study investigating seismic design costs of high-rise residential struc-
tures (Ref 24). They concluded that upgrading typical high-rise resi-
dential construction to seismic requirements of the UBC varied a great
deal from city to city. Approximately 0% to 30% was added to the basic
cost, depending upon the existing local code. The total deadweight of
the building was found to be an important factor in the general cost of




construction — the lighter the building the smaller the costs of upgrading.
Figure 15 presents some of their data, which are somewhat higher than
Whitman's.

Leslie and Biggs (Ref 25) analyzed a 13-story steel frame building.
Figure 16 shows the breakdown of costs of structural and nonstructural
items — Table ¢ showing the costs for nonstructural items and Figures
17 and 18 for structural items. The costs to nonstructural systems are
seen to be low. The major factor in the nonstructural system is providing
proper anchoring and bracing. Restraint of equipment was provided to
prevent sliding. Restraints and bracing were provided for ventilating
ducts, plumbing, transformers, and switchgear. Restraints were provided
for elevator motors. It should be noted that the deadweight of this
structure is low so the resulting costs of increasing seismic resistance
will be less. Reinforced concrete structures would exhibit increased
cost ratios, perhaps as much as a 75% increase in cost as illustrated in
Figure 19.

EARTHQUAKE COST DAMAGE ANALYSIS

An analysis of expected damage, injury, and cost of earthquake
resistant design for various design levels was made using the preceding
information. Site acceleration probability distributions for San Diego,
Calif.; Memphis, Tenn.; Bremerton, Wash.; Long Beach, Calif.; and Port
Hueneme, Calif.; were used. Typical results are shown in Table 10 and
Figure 20. Table 10 gives the design acceleration level, the probabilities
that the acceleration will and will not be exceeded, the associated
damage for design at that level, and the construction cost increase for
designing to that level. The last column gives the total cost, including
injury. Figure 20 gives a plot of design acceleration and total cost
increase where the total cost includes construction increase and expected
damage and injury. A minimum cost in this example occurs for a design
acceleration of 0.17 g which has a return period of 357 yerrs. Numerous
analyses were performed, using the probability distributions for the
above-mentioned sites. Results are shown in Figures 21 and 22. Figure
21 shows the least-cost design acceleration as a function of the 225-year
return time acceleration. The 225-year® acceleration characterizes the
site seismicity sufficiently accurate for all the sites, and the data
give a clear trend with minimal scatter which is significant considering
the variation in locations.

Figure 21 shows that for a 225-year acceleration of 0.2 g the
least-cost design acceleration would be about 0.19 g. The term "design
acceleration” in this case implies a design of a steel building to about
yield level (see Figure 10). The selection of the design level is based
on the ratio of coliapse to design level and its associated ductility
and damage as illustiated in Figure 10.

Figures 23 and 24 show plots similar to the preceding one with the
design level varied: elastic design, ductility of about 1.5, and
ductility of about 2.5. These curves are not inteanded to be generalized
for use in design bLut rather to illustrate the concept that the type of
design or amount of inelasticity to which a structure is designed influ-
ences the least-~cost design. The specification of a 130-year elastic

*Twenty percent chance of exceedence in 50 years.
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design acceleraion or a 160-year inelastic ductility equal to 1.5 design
acceleration should produce the same definition of structure, provided
consistent procedures are employed. This is admittedly an idealization
since two actual earthquakes, even at the same nominal acceleration,

will not produce the same response as shown in the preceding section on
comments of present methods. The thought is that the same performance by
alternative levels of inelastic design may be specified.

DISCUSSION OF STUDY RESULTS

First, it is important to point out that the data used in this
study are an accumulation of average behavior and have a wide scatter.
The intent is to demonstrate a trend, not to give guidance for a specific
building.

An examination of Figure 21 shows that the data are curved away
from the 1:1 correspondence line. The optimal design is not related to
a unique return period. Rather, at low accelerations it is greater than
the 225-year return time, and at high accelerations it is less. This
agrees with basic structural engineering experience in that it is difficult
and costly to resist high level shaking. Though uncertainty is present
in the data, it is believed the uncertainty will basically shift the
curve to left or right but not change its slope. So, the basic premise
that a constant return time is not a general optimal design level should
remain.

The basic data indicate that optimal design in high acceleration
areas should be greater than that prescribed by building codes but less
than the 225-year return time, which is the current NAVFAC criterion.

DISCUSSION OF RISK

If proposed government regulations are placed in effect, two important
criteria for establishing priorities of methods to reduce risk are (1)
the perception of the probability of the catastrophic event and (2) the
net cost of the saved lives and reduced damage. From an economic view-
point, an acceptable decision exists whenever the benefits minus the
costs are positive. The optimal decision level maximizes the net present
value (Ref 25).

An example can be seen in the following. A building may be strength-
ened at a cost of $10,000, reducing seismic damage of $2 million. The
probability of damaging earthquakes occurring is 0.002. Should the
building be strengthened? The expected benefit is $4,000 (0.002 x $2
million). The expected benefit is less than the cost; thus, the economic
decision is no.

In general, the purchase of insurance violates economic theory
since the insurance policy premium exceeds the expected benefit; however,
substantial insurance is sold. Risk aversion is accomplished by the
payment of a fixed cost to avoid the potential of large losses. The
perception of the loss may be linearly or nonlinearly related to the
cost, based on the perception of the investigator (Ref 25). For example,
if the $10,000 cost of strengthening the example building is viewed as
an acceptable business expense and if the possibility of the total loss

11




of the facility is an unacceptable catastrophe, a businessperson may

indeed opt for the strengthening option. It is realized that it is not
economically advantageous but the consequence is perceived in a "nonlinear"
manner.

A large organization such as the Navy is regionally dispersed,
therefore, the relationship of dollar loss from an earthquake to cost of
strengthening for such an organization should be linear. When the case
of 100 buildings similar to the example building being widely dispersed
is considered, it might be assumed that the full loss of these 100
separated buildings is unlikely (100 buildings x $2 million). Thus, the
expected value is indeed a good representation of the actual loss. This
illustration demonstrates risk pooling, which is applicable to large
organizations like the Navy.

NAVY ECONOMIC ANALYSIS

Reference 27 specifies procedures for economic analyses of facilities.
The principles of the analyses are:

1. To insure an optimum allocation of scarce resources

2. To 2ffectively consider alternatives and life-cycle funding
implications

3. To recognize that money has value over time expressed
by an interest rate

This problem thus must include the consideration that earthquake strength-
ening is expressed as a current cost increase to protect against a
future dollar loss. The real world is complicated by cost increases
over time (referred to as inflation). This means that to repair or
replace the damaged building some time in the future will cost more than
today. The work in the previous sections expressed costs of strengthening
and damage as a percentage of building value to maintain a common refer-
ence. That premise recognized increased value of the building and
increased costs of repair. In an economic sense this may be expressed
as letting the discount rate (the value of return on investment) be
equal to the inflation rate.

The government has placed a value on money in time. Reference 27
and DODINST 7041.3 specify the discount rate as 10%. Reference 27
states:

"The rationale for adopting the private-sector rate of
return as the discount rate for analyzing Government invest-
ment proposals turns on the notion that Government invest-
ments are funded with money taken from the private sector
{preponderantly via taxation), are made in the ultimate behalf
of the private sector (i.e., the individuals comprising it),
and thus bear an implicit rate of return comparable to that of
projects undertaken in the private sector. In this interpre-
tation, 10% measures the opportunity cost of investment cap-
ital forgone by the private sector."

12




The 10% rate is a differential rate in addition to inflation (further,
the maximum economic life is set at 25 years for permanent buildings;
the present earthquake design criteria are based on 50 years).

When the present worth of the annual expected damage is considered
using a discount rate of 10%, the present worth estimate of the damage
would effectively be reduced by a factor of about 5. To restate this,
the earthquake could occur at any point during the life of the structure;
the best estimate is to consider an annual series of expected losses.
The present worth of this series can be computed and its value is about
one-fiith of the total expected loss. This has a major effect on the
optimum design levels (Figures 25 and 26).

It is important to note that the discount rate specified for use is
actually a differential rate of 10% over the rate of inflation. It is
recognized that the future cost of the repair would increase with time.
One could use the differential rate and not consider inflation, or one
could consider the rate of inflation to project an increased repair cost
and then discount that cost using a discount rate of 10% plus the inflation
rate. The results for modest inflation rates are approximately the
same. The differential cost approach has been used in this study.

Comparing the NAVFAC acceleration criterion (80% probability of
nonexceedance in 50 years) with the optimal least cost-acceleration it
is possible to compute cost per life saved (Figure 27). For example,
for a 50-year exposure of a building with an initial cost of $1 million:

A. NAVFAC Criterion

Acceleration 0.26 g

Cost of seismic strengthening $338,700
Present worth of expected damage $26,200

Lives lost 0.0491 people

B. Least Cost Design

Acceleration 0.12 g
Cost of seismic strengthening $123,900
Present worth of expected damage $95,100
Lives lost 0.1711 people
(1) Damage Difference (B - A) $68,900
(2) Cost Difference (A - B) $214,800
(3) Lives Lost (B ~ A) 0.122
Marginal Value [(2) - (1)]/(3) $1,200,000

A marginal value - $1,200,000 — for the current NAVFAC earthquake
criterion of 80% probability of not being exceeded in 50 years is high
in comparison with other sectors.

Paté (Ref 28) has calculated the marginal value per life which is
necessary if benefits are to exceed costs for seismic design level in
the San Francisco Bay area. Results, although tentative, indicate that

13




to adopt the 1973 UBC a value of life would be on the order of $6 million/
life for the enforcement of the seismic provisions in new buildings and
$22 million/life for the upgrading of old buildings to the same standards.
A value of $20 million/life is required to adopt the 1976 provisions for
new construction. The marginal cost per life saved in other sectors of
public safety is much lower. In the transportation sector, cost benefit
analysis projections are around $300,000. The conclusion of Paté's work
is that it is hard to justify the 1973 and 1976 seismic design provisions
solely on the interest of life safety.

Organizational theory suggests that an individual within an organiza-
tion accepts a framework which defines the areas of responsibilities and
correspondingly narrows the scope of alternative decisions. Engineers
in seismic design are not usually tasked to resolve problems from the
viewpoint of investment costs and protection benefits. Engineering
regulations from as far back as the Code of Hammurabi have had public
safety foremost. The public perceives a requirement for the government
to assure safety. Yet, according to Paté, the value of life in other
sectors such as health is markedly lower than imposed for building
safety; take, for example, the $20,000/1life value as a result of the
program to reduce the risks of heart attack. The perceived action
results from the public and the professional engineer's risk aversion
from the visibility of large catastrophes. Public policy may also have
a cyclic aspect as people forget about earthquakes, where return periods
are larger than collective memory, and perception diminishes.

GROUP RISKS

A major point in an analysis of this type is: given the earthquake,
can the Navy accept the loss of an installation? Table 11 shows a
damage summary for key buildings at the North Island Air Station, San
Diego, taken from Reference 29. Figure 28 illustrates the probability
of not exceeding a given level of dollar loss based on Table 11, while
Figure 29 is derived from Reference 2. A 50-50 chance exists in 50
years of a loss of about $30 million which has a present worth of $6
million (Figure 28). It would cost about $13 million to design against
this 0.2 g level of ground motion.

SUMMARY

Current NAVFAC criteria specify that for important buildings a site
seismicity study shall be performed and the design earthquake level
shall be taken as the site acceleration having an 80% chance of not
being exceeded in 50 years (225-year return time). This report has
reviewed construction cost increases for seismic strengthening and
expected damage from seismic shaking. The specification of a 225-year
return time acceleration does not produce optimal least total cost
designs over all ranges of acceleration. Rather the least total cost
design acceleration varies with site activity. It is not economically
advantageous to design against high ground acceleration. Use of economic
analysis procedures specified in Reference 27 suggest the present worth
of future damage is low enough that an earthquake design return time of
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half the present value for a ductility of 1.0 is more efficient (see
Figures 25 and 26). Collapse event® return times of about 1,000 years
seem appropriate and consistegg with the design levels, based on an
individual exposure of 1 x 10 fatalities per year.

It is important to note that should reductions in design (or service)
levels be made, it is essential that collapse level investigations be
performed to insure adequate ductility.

In evaluating seismic planning decisions, it is recommended that
the Navy should:

1. Adopt a risk pooling policy, relating a direct linear rela-
tion between expected losses and cost of strengthening

2. Consider as acceptable investments only instances where the
benefits exceed the costs

Again, it is important to note that by reducing design levels,
immediate cost savings will occur; however, increased damage in the
future is expected. The present worth of this future damage, using the
DOD-specified differential rate of return, is less than the costs of
strengthening. However, in conjunction with this must be the realization
that more extensive disruption will occur. Present NAVFAC criterion
exceeds building codes by two to three times; whereas optimal design, as
suggested herein, would be approximately at the same levels.

A basic analysis of typical Navy buildings (such as Bachelor Officer
Quarters and industrial and administrative buildings) should be made.
Typical structures should be designed for various acceleration levels
and cost estimates made to evaluate cost at various seismic levels as a
function of design acceleration. The structures should also be analyzed
to better define the specific damage function for that type of construction
to give a better estimate for a specific case study than that given in
the general data used herein.
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Table 3. Peak Inter-Story Elastic Displacements of Four-Story Building

(Ref 15)
[Fundamental Period = 1.13 seconds]
Time-History SRSSb Modal Time-History
Story | Analysis of Analysis — Mean (or Mean + 0) Analysis of 15
39 Earthquakes Response Spectrum Artificial Motions
i
Mean

1 0.122 0.126 0.133

2 0.107 0.104 0.115

3 0.092 0.088 0.093

4 0.063 0.059 0.064

Mean + ©

i 1 0.194 0.193 -~

2 0.169 0.166 --

3 0.137 0.131 --
| 4 0.089 0.083 --

Coefficient of Variation

1 0.58 -- 0.25

2 0.57 -- 0.29

3 0.48 -- 0.29

4 0.40 -- 0.24

3Normalized to 0.3-g peak ground accelerations.
b i
Square root of sum of squares.

€a11 generated from mean response spectrum.
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Table 4. Peak Inter-Story Ductility Ratios of Four-Story Building
(Ref 15) |
[Fundamental Period = 1.13 seconds]
Stor Analysis of Analysis of 15
y 39 Earthquakesa Artificial Motions
Mean i
1 5.7 4.4
2 2.6 .2
© 3 4.0 5.0
4 9.7 13.8
Coefficient of Variation T
1 1.23 0.42 |
‘ 2 0.48 0.31
3 0.48 0.28
4 0.49 0.39
Maximum - Minimum
1 38.6 - 0.8 10.2 - 2.6
2 5.9 - 0.8 5.6 - 1.9
3 8.9 - 1.0 7.6 -2.9
= 4 27.8 - 2.2 21.1 - 7.0
l ¥Normalized to 0.3-g peak ground acceleration.
bA11 generated from mean response spectrum.
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Table 5. Damage Probability Matrix for Post-1947 Buildings,
From San Fernando Earthquake (based on Ref 10)

Damage Intensity
State VI VII VII-VIII
0 79% 33% 6%
1 18% 349, 19%
2 3% 20% 44%
3 - 10% 13%
4 - 3% 6%
5 - - 12%
6 - - -
7 - - -
8 - - -
Mean Damage Ratio 0.05% 0.5% 2.74%
Number of Buildings 57 156 16

<

No Damage

Minor nonstructural damage--a few walls and partitions cracked,
incidental mechanical and electrical damage

Localized nonstructural damage~-more extensive cracking (but
still not widespread); possibly damage to elevators and/or other
mechanical electrical components

Widespread nonstructural damage--possibly a few beams and
columns cracked, although not noticeable

Minor structural damage--obvious cracking or yielding in a few
structural members; substantial nonstructural damage with wide-
spread cracking

Substantial structural damage requiring repair or replacement of
some structural members; associated extensive nonstructural damage

Major structural damage requiring repair or replacement of many
structural members; associatecC nonstructural damage requiring
repairs to major portion of interior; building vacated during repairs

Building condemned

Collapse
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Table 9. Cost Increase for Increasing Seismic Force
{ Design Levels (Ref 25)

|
Increase Over Original
Percentage Total Total Construction Cost
Cost of ‘
Item Item (%) for Zones --
%) 1 2 3 4 ]
Structural
{
Structural Steel? 5.42
12.5 - 0.171 | 2.68 6.6
Foundation® 1.2 - | 0.162 | 0.162 | 0.162
! ConcreteaWalls 3.7 - 0.024 | 0.09 0.102
* and Slab '
Composite Deck? 5.8 - - - -
Total Structural 23.2 - 0.36 2.93 5.66b
6.86°
i Nonstructural
Masonry Core® 5.0 0.55 | 0.55 0.55 0.71
a
| Precast Panels 4.73 - 0.024 | 0.033 | 0.067
Plumbing 3.6 - - 0.022 0.022
HVAC 18.8 - 0.032 | 0.15 0.197
Electrical (includ- 8.5 - 0.022 | 0.104 | 0.104
. ing lights)
§ Elevators 4.8 - | 0.027 | 0.131 | 0.165
: Window Systems 4.5 - - - 0.6279
I
: Partitions 4.45 - 0.012 | 0.163 | 0.163
Acoustical Ceilings 2.2 - - 0.114 { 0.163
S ) Miscellaneous 3.7 - | 0.07 | 0.089 | 0.089
L Metals _—
4 Total Nonstructural 68.35 0.55 | 0.74 | 1.36 | 2.31
)
Total Code Design 6.4372
) (code design items) 32.93 0.55 | 0.934 | 3.513 | 7.637
f Maximum Design® 91.55 0.55| 1.10 | 4.29 | 7.97°
oy 9.17
;i a d
i Code design. New window system.
b bUsing builtup members. eTotal structural and
? cUsing WF 27 girders. nonstructural items.




i Table 10. Analysis Results

[100 % damage ratio 4.00
Building value 1000000.00
Exposure period 50.00]

ACC P PNOT DAM COST TC
0.4320 0.0000 1.0000 0.0000 0.6930 0.6930
0.4278 0.0100 0.9900 0.0001 0.6841 0.6842
0.3929 0.0198 0.9802 0.0016 0.6099 0.6114
0.3197 0.0296 0.9704 0.0071 0.4543 0.4614
0.2663 0.0392 0.9608 0.0142 0.3408 0.3550
0.2651 0.0488 0.9512 0.0144 0.3383 0.3527
0.2455 0.0582 0.9418 0.0193 0.2967 0.3160
0.2449 0.0676 0.9324 0.0195 0.2955 0.3149
0.2266 0.0769 0.9231 0.0261 0.2564 0.2825
0.2167 0.0861 0.9139 0.0304 0.2355 0.2659
0.2011 0.0952 0.9048 0.0384 0.2024 0.2408
0.1933 0.1042 0.8958 0.0432 0.1933 0.2366
; 0.1930 0.1131 0.8869 0.0435 0.1930 0.2365
| 0.1867 0.1219 0.8781 0.0482 0.1867 0.2350
0.1706 0.1306 0.8694 0.0622 0.1706 0.23292
0.1700 0.1393 0.8607 0.0628 0.1700 0.2329°
0.1679 0.1479 0.8521 0.0652 0.1679 0.2331
' 0.1626 0.1563 0.8437 0.0713 0.1626 0.2339
0.1616 0.1647 0.8353 0.0725 0.1616 0.2341
0.1566 0.1730 0.8270 0.0792 0.1566 0.2358
0.1562 0.1813 0.8187 0.0798 0.1562 0.2360
0.1518 0.1894 0.8106 0.0865 0.1518 0.2383
0.1459 0.1975 0.8025 0.0962 0.1459 0.2421
: 0.1279 0.2055 0.7945 0.1309 0.1279 0.2588
) 0.1246 0.2134 0.7866 0.1385 0.1246 0.2631
' 0.1220 0.2212 0.7788 0.1446 0.1220 0.2667
0.1174 0.2289 0.7711 0.1569 0.1174 0.2743
. 0.1156 0.2366 0.7634 0.1620 0.1156 0.2775
0.1154 0.2442 0.7558 0.1623 0.1154 0.2778
g 0.1076 0.2517 0.7483 0.1871 0.1076 0.2947
' 0.1076 0.2592 0.7408 0.1871 0.1076 0.2947
V. 0.1045 0.2666 0.7334 0.1976 0.1045 0.3021
. 0.1012 0.2739 0.7261 0.2093 0.1012 0.3104
. 0.1001 0.2811 0.7189 0.2131 0.1001 0.3132
0.0954 0.2882 0.7118 0.2308 0.0954 0.3262
! 0.0944 0.2953 0.7047 0.2347 0.0944 0.3292
‘ 0.0882 0.3023 0.6977 0.2619 0.0882 0.3501
! 0.0876 0.3093 0.6907 0.2646 0.0876 0.3522
- 0.0870 0.3161 0.6839 0.2674 0.0870 0.3544
’ 0.0868 0.3229 0.6771 0.2685 0.0868 0.3553
" 0.0858 0.3297 0.6703 0.2733 0.0858 0.3591
i 0.0854 0.3363 0.6637 0.2751 0.0854 0.3605
¥ 0.0854 0.3430 0.6570 0.2751 0.0854 0.3605

a,. .
Minimum.
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Figure 1. Damage estimate for different design strategies (after Ref. 10).
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Figure 2. Ratio of elasto-plastic to clastic periods (Ref. 17).
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(c) Type C.
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Figure 3. Masonry buildings (Ref. 7 © permission to use granted by

Earthquake Engineering Systems.)




¥1'o

(61 32d Wouy) Jup AI01s snsada dfewtep (g0 g 2ndiyg

1o

oro

(1) ¢ ‘Yuq Limg

800

90’0

+0°0

700

(1}

1

1

e

%

01

(3500 uoNINIISUOY Jo %) Bewe (R10],

(81 32y) diysuonepas ones afewep s3easay 4 2ndig

Asuaauy — JWW

1X X X1

A

T T T
UBSap SIS Yl

Atpenb ydig-A1uosew padiojual
f udsap
JIWSIDS YN SOLWEBLY DS

SBUI[2 WP SWEBL UIPOOM
UBISAP SULSIAN YIm S{[EMNIBIYS
- udisap srustas
L N SOUIRIE-IDIIUOD PAdIojUIN]
9 U AP DS oYW
Luenb wnipaw-Asuosews pariogunas
uiop

SIUSIIS INOYITW-SIUESJ |28

:%_Ih—« RITTVEYR _BQE::/

SIWRIE IIIIIUON PO JULU

5 ijenb
(f.—‘a.‘:_:lﬁ:_ pPaviopurIun

Q]
®
®
@
®
©
®
®©
©
0)

= opr \
. /.
" /
o -
- -4
- -
3 -
- -
3 -
L -
o -
L -
. f
.
-
I A S
- —————————
P - - - A -

wy
(%) oney 2fewe()

o
—

05

38




(81 32y) sodues pasodoid pur sdiysuoirepas Bunsixy -z andiyg

W I Alsuaug

X1 A 1A 1A A Al
T 1 1 ¥ )
4
B FEVFETITISE 81 P
B aaejndy -
- 121yd1y pue 1aquainn I
| (s23nEg pue yrYS) sanfea viq B
30 23ues pardopy
L -
- -
n uaug,0 .
pue Aydingy 421NES
i yrys i 7]
Apeig pue dRUNJUY, ]
sdaseiquiy -1
1 L 1 n

SO0

$0

01

(3) uoURIIPIIY PUNOIY) YEIY

(61 J3y woiy) 1jup A101s snsiaa onel 3feureq -9 andiyg

33) ¢ ‘yuq Lioxg

+1°0 oro 800 +0°0 0
T T T T T 3 T 0
- o° —1z0
o
- o -

Z
= 1% %0 3
o o g
[o] o H
e
= - £
° g
i 2
B 90 %
x
u &
vzs8=d | g
o uﬂ

— 9 d 80

o]
(o]
Io -
| 1 1 1 1 1 1 o1

39




Damage

steel
masonry
concrete

Figures 3 and 4

Intensity

Figure §

Story Drift

Figure 7

Acceleration

Figure 8. Concept of relating acceleration to story drift and damage.
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Figure 12. Cost to save human life (from Ref 20).
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Figure 13. Cost ratio of five-story buildings (Ref 22).
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Figure 17. Cost increase for scismic design (Ref 22).
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Based on 80% probability not exceeded in 50 years.

0.2

Site Acceleration

0.1

i
0 0.1 0.2 0.3

Optimum Design Level (g's)

Figure 21. Site acceleration not discounting future damage.
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Figure 25. Design acceleration discounting future damage.
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Figure 26. Design return time discounting future damage.
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: UNIVERSITY OF ILLINOIS Metz Ref Rm. Urbana IL; URBANA, IL (LIBRARY); URBANA, IL
1 (NEWMARK): Urbana IL (CE Dept. W. Gamble)
' UNIVERSITY OF MASSACHUSETTS (Heronemus). Amherst MA CE Dept
UNIVERSITY OF MICHIGAN Ann Arbor Ml (Richart)
) UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)
o UNIVERSITY OF NEW MEXICO J Nielson-Engr Matls & Civil Sys Div. Albuquerque NM
UNIVERSITY OF NOTRE DAME Katona, Notre Dame, IN
., UNIVERSITY OF TEXAS Inst. Marine Sci (Library). Port Arkansas TX
) UNIVERSITY OF TEXAS AT AUSTIN AUSTIN. TX (THOMPSON): Austin, TX (Breen)
v UNIVERSITY OF WASHINGTON Dept of Civil Engr {Dr. Mattock). Seattle WA; SEATTLE, WA
) (MERCHANT); SEATTLE. WA (OCEAN ENG RSCH LAB. GRAY)
‘ ALFRED A. YEE & ASSOC. Honolulu Hi
) AMETEK Offshore Res. & Engr Div

. APPLIED TECH COUNCIL R. Schoil, Palo Alto CA
f ARVID GRANT OLYMPIA, WA

ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)
’ BECHTEL CORP. SAN FRANCISCO, CA (PHELPS)
; BELGIUM HAECON. N.V., Gent
: BETHLEHEM STEEL CO. Dismuke, Bethelehem, PA
: BOUW KAMP INC Berkeley
v BROWN & CALDWELL E M Saunders Walnut Creek, CA
‘1 CANADA Mem Univ Newfoundland (Chari). St Johns: Surveyor. Nenninger & Chenevert Inc., Montreal;
"\ Trans-Mnt Oil Pipe Lone Corp. Vancouver. BC Canada
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CHEVRON OIL. FIELD RESEARCH CO. LA HABRA. CA (BROOKS)

CONCRETE TECHNOLOGY CORP. TACOMA. WA (ANDERSON)

CONRAD ASSOC. Van Nuys CA (A. Luisoni)

DRAVO CORP Pittsburgh PA (Wright)

EVALUATION ASSOC. INC KING OF PRUSSIA. PA (FEDELL)

FORD. BACON & DAVIS. INC. New York (Library)

FRANCE Dr. Dutertre, Boulogne: L. Pliskin, Poris: P, Jensen. Boulogne

GLIDDEN CO. STRONGSVILLE. OH (RSCH LIB)

GRUMMAN AEROSPACE CORP. Bethpage NY (Yech. Info. Cir)

HONEYWELL. INC. Minncupotis MN (Residential Enge Lib.}

HUGHES AIRCRAFT Culver City CA (Tech. Doc. Ctr)

ITALY M. Caironi. Milan: Sergio Tattoni Milano: Torino (F. Levi)

JAMES CO. R. Girdley, Orlando FL

LOCKHEED MISSILES & SPACE CO. INC. Sunnyvale CA (Rynewicz): Sunnyvale, CA (K.L.. Krug)

MARATHON OIL CO Houston TX

MCDONNEL AIRCRAFT CO. Dept 501 (R.H. Fayman). $t Louis MO

MEXICO R. Cardenas

MOBIL PIPE LINE CO. DALLAS. TX MGR OF ENGR (NOACK)

MUESER, RUTLEDGE, WENTWORTH AND JOHNSTON NEW YORK (RICHARDS)

NEW ZEALAND New Zealand Concrete Research Assoc. (Librarian). Porirua

NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (Tech. Lib.)

NORWAY DET NORSKE VERITAS (Library). Oslo; DET NORSKE VERITAS (Roren) Oslo: 1. Foss. Oslo:
J. Creed. Skiz Norwegian Tech Univ (Brandtzacg). Trondheim

PACIFIC MARINE TECHNOLOGY Long Beach. CA (Wagner)

PORTLAND CEMENT ASSOC. SKOKIE. 1. (CORLEY: Skokic 1L. (Rsch & Dev Lab, Lib.)

PRESCON CORP TOWSON. MD (KELLER)

RAND CORP. Santa Monica CA (A, Laupa)

RAYMOND INTERNATIONAL INC. E Colle Soil Tech Dept. Pennsauken, NJ

RIVERSIDE CEMENT €O Riverside CA (W. Smith)

SANDIA LABORATORIES Library Div., Livermore CA

SCHUPACK ASSOC $O. NORWALK, CT (SCHUPACK)

SEATECH CORP. MIAMI. FL. (PERONI)

SHELL DEVELOPMENT CO. Houston TX (E. Doyle)

SHELL OIL CO. HOUSTON, TX (MARSHALL)

SWEDEN GeoTech Inst: VBB (Library), Stockholm

TRW SYSTEMS CLEVELAND. OH (ENG. LIB.}: REDONDO BEACH. CA (DAD

UNITED KINGDOM Cement & Concrete Assoc Wexham Springs. Slough Bucks: Cement & Concrete Assoc.
(Lit. Ex). Bucks: Library. Bristol: Shaw & Hatton (F. Hanscn). London: Tavlor. Woodrow Constr (014P),
Southall. Middlesex: Univ. of Bristol (R. Morgan), Bristol

WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib, Brvan): Library. Pittsburgh PA

WISS. JANNEY., ELSTNER. & ASSOC Northbrook, IL (D.W. Pleifer)

Al SMOOTS Los Angeles. CA

BROWN. ROBERT University. AL

BULLOCK La Canada

ERVIN, DOUG Belmont, CA

F. HEUZE Alamo. CA

LAYTON Redmond. WA

CAPT MURPHY Sunnyvale, CA

R.F. BESIER Old Savbrook CT
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